101. Verordnung über das Curriculum des Universitätslehrganges "Lightweight Membrane Structures MEng" (Fakultät für Bildung, Kunst und Architektur, Department für Bauen und Umwelt)

§ 1. Weiterbildungsziel

Der Universitätslehrgang "Lightweight Membrane Structures MEng" hat den Zweck, den Studierenden vertiefte und anwendungsorientierte Kenntnisse zur Anwendung und Weiterentwicklung wissenschaftlicher, künstlerischer und technischer Fachkenntnisse und Verfahren im Bereich des Membranbaus zu befähigen. Der Begriff "Membranbau" beschreibt im gegenständlichen Sinn bauliche Strukturen aus flexiblen, nicht-festen Materialien, welche in ihrer Anwendung vom einfachen Beschattungssegel bis hin zur Stadienüberdachung reichen. Hierbei gilt es in besonderem Maße, alle neuen Materialien und Verarbeitungstechnologien in den Kontext der Ökonomie, der Bautechnik, des Prozessmanagements, des Bauens im historischen Kontext etc. zu erfassen, zu analysieren und gegeneinander abzuwägen. Inhaltliche Schwerpunkte architektonischer Entwurf, Engineering, Materialwissenschaften bis hin zur Herstellung und dem Recycling werden gleichermaßen berücksichtigt.

Lernergebnisse:

AbsolventInnen des Universitätslehrgangs sind in der Lage

- die erworbenen Kenntnisse beim Entwerfen, Konstruieren sowie Berechnen von Membranbauten anzuwenden
- strategische Planungs- und Umsetzungskonzepte für Membranbauten zu entwickeln und fachgerecht zu begleiten
- die entsprechenden Technologien im Membranbau im Sinne einer zukunftsorientierten Technik umzusetzen
- bauphysikalische und bautechnische Zusammenhänge zu erkennen und diese in die Planungskonzepte zu integrieren
- Planungsmethoden und -varianten mit angemessenem Computereinsatz in Zeichnungen und Modellen darstellen und verwenden
- Werkzeuge des Projektmanagements in Membranbau-Projekten bzw. Projektstrukturen anzuwenden
- geplante sowie fertiggestellte Projekte zu evaluieren

§ 2. Studienform

Der Universitätslehrgang "Lightweight Membrane Structures MEng" wird als berufsbegleitendes Bildungsprogramm in englischer Sprache angeboten angeboten. Durch geeignete Blockung der Lehrveranstaltungen wird auf die Besonderheiten des berufsbegleitenden Studierens Rücksicht genommen.

§ 3. Lehrgangsleitung

- (1) Als Lehrgangsleitung ist eine hierfür wissenschaftlich, didaktisch und organisatorisch qualifizierte Person zu bestellen.
- (2) Die Lehrgangsleitung entscheidet in allen Angelegenheiten des Universitätslehrgangs, soweit sie nicht anderen Organen zugeordnet sind.

§ 4. Dauer

In der berufsbegleitenden Variante dauert das Studium 4 Semester mit insgesamt 45 Semesterstunden (90 ECTS Punkte). Würde das Studium in einer Vollzeitvariante angeboten, so dauert es 3 Semester.

§ 5. Zulassungsvoraussetzungen

- (1) Voraussetzung für die Zulassung zum Universitätslehrgang "Lightweight Membrane Structures MEng" ist:
 - 1. ein abgeschlossenes, facheinschlägiges österreichisches Hochschulstudium oder
 - 2. ein nach Maßgabe ausländischer Studienvorschriften abgeschlossenes, gleichwertiges Hochschulstudium einer einschlägigen Fachrichtung.
- (2) Zugelassen können ferner auch solche Personen werden, die die Voraussetzungen des § 5 Abs.1 nicht erfüllen, sofern diese Personen aufgrund einer sonstigen Ausbildung und aufgrund einer relevanten, einschlägigen Berufspraxis über eine derartige Qualifikation verfügen, die im gegenständlichen Fachgebiet jener gleichzuhalten ist, die von der in § 5 Abs.1 genannten Personengruppe erwartet werden kann. Jedenfalls gilt als Mindestanforderung für Zulassung zu diesem Universitätslehrgang: 2a) bei Vorliegen der Universitätsreife (Studienberechtigung) eine zumindest 4-jährige, facheinschlägige, qualifizierte Berufserfahrung, bzw. 2b) ohne Vorliegen der Universitätsreife (Studienberechtigung) eine 8-jährige, facheinschlägige, qualifizierte Berufserfahrung.
- (3) Für die BewerberInnen ist in Übereinstimmung mit § 6 und § 7 ein geeignetes Bewerbungsverfahren einzurichten.
- (4) Gute Englischkenntnisse sind Voraussetzung für die Zulassung zum Universitätslehrgang "Lightweight Membrane Structures MEng".

§ 6. Studienplätze

- (1) Die Höchstzahl an Studienplätzen, die für einen Universitätslehrgang zur Verfügung stehen, ist von der Lehrgangsleitung nach pädagogischen und organisatorischen Gesichtspunkten festzusetzen.
- (2) Die Zulassung zum Universitätslehrgang "Lightweight Membrane Structures MEng" erfolgt nach Maßgabe vorhandener Studienplätze. Bei Platzmangel werden die Studienplätze in der Reihenfolge des Eintreffens der verbindlichen, schriftlichen Bewerbung unter Berücksichtigung des Ergebnisses des in § 5 Abs. 3 erwähnten Bewerbungsverfahrens vergeben.

§ 7. Bewerbungs- und Zulassungsverfahren

- (1) Die Bewerbung zum Universitätslehrgang "Lightweight Membrane Structures MEng" erfolgt schriftlich.
- (2) Das Zulassungsverfahren besteht aus einer Prüfung der Bewerbungsunterlagen unddem Bewerbungsverfahren.
- (3) Die Zulassung der Studierenden obliegt gemäß § 60 Abs.1 UG 2002 dem Rektorat.

§ 8. Unterrichtsprogramm

Das Unterrichtsprogramm des Universitätslehrgangs "Lightweight Membrane Structures MEng" setzt sich zusammen aus 6 Unterrichtsmodulen (Fächer), aufgeteilt auf drei Semester, und einem für die individuelle Erarbeitung der Master-Thesis belegten Semester (Modul 7).

Fächerübersicht	UE	ECTS
1. Basics	50	6
 History of membrane architecture and engineering 	16	2
 Applications and purpose of tensile structures 	9	1
 Unique selling proposition (usp) of membrane structures 	9	1
 Concept of shape and geometry in tensile structures 	16	2
2. Architecture and Engineering I	130	12
- The architecture approach, design strategies	22	2
 Context, concept and programme of architectural space 	11	1
 Application and use and experimental design 	22	2
 Psychology and sociology of space as the concept behind 	11	1
 Design project workshops, physical Models and Mock-ups 	31	3
 Building technology and climate design 	22	2
 Fee structure, object planning, standard and building codes 	11	1
3. Architecture and Engineering II	100	12
- Geometry, Building survey	16	2
- The engineering approach	8	1
 Schematic design, precalculation, predimensioning 	16	2
 Fee structure - structure planning 	8	1
 Load analysis and dynamics, 	18	2
cutting pattern methods and generation		
 Advanced engineering 	18	2
- Guest lectures, reviewers, critiques	16	2
4. Software	130	13
 Software tools for the design of tensile structures 	20	2
 Drawing tools for architects and engineers 	20	2
 Building information modelling (B.I.M.) 	10	1
 Software tools for engineering calculation and management 	50	5
 Software tools for project management and controlling 	10	1
- Finite element software	20	2
5. Material and details	135	14
- Material properties eg. membranes, cables, belts	35	4
 Testing and evaluation of material, details, buildings 	20	2
- Detail development	20	2
- Energy, solar gain, light transmission	20	2
- Building physics	20	2
- Climate engineering	10	1
- Patents, intellectual properties	10	1

6. Management, production process and assembly	130	15
 Team building and team management Project management (commercial, technical, regulative aspects) 	9 s) 16	1 2
- Time and resource management	16	2
 Construction process and quality management 	20	2
 Cost estimation, determination and management 	18	2
Contract procedures for construction work (tender)	16	2
Hand over and final documentation, maintenance	16	2
 Sustainability and recycling 	9	1
- Scientific methods	10	1
7. Master-Thesis	18	

675 90

§ 9. Lehrveranstaltungen

- (1) Die Lehrveranstaltungen sind von der Lehrgangsleitung jeweils für einen Universitätslehrgang vor dessen Beginn in Form von Vorlesungen, Übungen, Seminaren oder Fernstudieneinheiten festzulegen und insbesondere in einer Informationsbroschüre kundzumachen.
- (2) Lehrveranstaltungen können, sofern pädagogisch und didaktisch zweckmäßig, als Fernstudieneinheiten angeboten werden. Dabei ist die Erreichung des Lehrzieles durch die planmäßige Abfolge von unterrichtlicher Betreuung und Selbststudium der Studierenden mittels geeigneter Lehrmaterialien sicherzustellen. Die Aufgliederung der Fernstudieneinheiten auf unterrichtliche Betreuung und Selbststudium, der Stundenplan und die vorgesehenen Lernmaterialien sind den Studierenden vor Beginn der Lehrveranstaltung in geeigneter Weise bekannt zu machen.

§ 10. Prüfungsordnung

Die Studierenden haben eine Abschlussprüfung abzulegen, die aus folgenden Teilen besteht.

- (1) Schriftliche oder mündliche Prüfungen oder Prüfungsarbeiten über alle Fächer des Curriculums.
- (2) Verfassung und positive Beurteilung einer Master-Thesis.
- (3) Kommissionelle mündliche Prüfung am Ende des Studiums. Gegenstand dieser Prüfung sind zwei Fächer nach Wahl der/des Studierenden sowie die Verteidigung der Master-Thesis. Die Zulassung zur kommissionellen Prüfung setzt den positiven Abschluss aller Fachprüfungen und die positive Beurteilung der Master-Thesis voraus.
- (4) Leistungen, die an universitären oder außeruniversitären Einrichtungen erbracht wurden, können anerkannt werden, wenn eine Gleichwertigkeit dieser Leistungen vorliegt.

§ 11. Evaluation und Qualitätsverbesserung

Die Evaluation und Qualitätsverbesserung erfolgt durch

- (1) regelmäßige Evaluation aller ReferentInnen durch die Studierenden sowie
- (2) durch eine Befragung der AbsolventInnen sechs Monate nach Beendigung des Universitätslehrgangs und Umsetzung der aufgezeigten Verbesserungspotentiale.

§ 12. Abschluss

- (1) Nach erfolgreicher Ablegung der Abschlussprüfung ist dem/der Studierenden ein Abschlussprüfungszeugnis auszustellen.
- (2) Der Absolventin oder dem Absolventen ist der akademische Grad "Master of Engineering", MEng. zu verleihen.

§ 13. Inkrafttreten

Das vorliegende Curriculum tritt mit der Veröffentlichung in Kraft.