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EQUATIONS

(Gauss' law for magnetism)

(Poisson equation) 
can be solved with Green's function
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Interface Condition
at magnet surface 

Dirichlet Boundary Condition
at "infinity" (air box surface)

FEM: Galerking method applied to transfer the demagnetization problem to 
a systemt of linear equations.
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8 scalar potential interpolated by piecewise linear functions over finite elements
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CREDITS TO

Micromagnetic 
simulations are an 
important tool to design 
better magnets. The 
computationally most 
expensive part is the 
evaluation of the 
demagnetizing field in 
and outside of the 
magnet. Therefore, in 
this work we propose
to reduce computing 
resources by using the 
framework of MFEM[1]. 
This framework allows 
the use of hexagonal 
finite elements and an 
has a built-in Adaptive 
Mesh Refinement 
module. We 
demonstrate the 
demagnetization field 
computation 
convergence towards 
the exact solution at 
different mesh 
refinement stages, 
where  refinement itself 
is triggered with the 
Zienkiewicz-Zhu[2] error 
estimation. This first 
proof of concept shows 
a convergence rate of 
-0.07.
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The relative error for the demagnetizing field computation 
decreases with increasing number of elements. The adaptive 
mesh refinement is triggered by Zienkiewicz-Zhu residuum 
estimation and the mesh is  refined mainly around the 
surfaces of the magnet normal to its initial magnetization.

Relative error will never reach zero, because of singularity 
of the demagnetizing field near magnet's edges.

Refinement rule currently not well chosen, see error 
plateaus on the right.

A convergence rate of -0.07 is computed.

Because of the singularity of the 
demagnetizing field near the edge, 
the error will never reach zero[4], but 
the error is reduced by refined 
elements at the edges.

Demagnetization field successfully computed with 
HEX-Elements using MFEM. Adaptive Mesh 
Refinement rules tested, but have to be improved. 
The estimated error and the exact error decrease at a 
similar rate. In micromagnetics the refinement will 
stop if mesh size has reached exchange length.

CONCLUSION

Computes the error by comparing the 
smoothed demagnetizing field with the finite 
element solution at the elements.

Elements are marked for refinement 
if the element error is greater than 
70% of the current maximum error.
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