Developmental tissue engineering model of endochondral ossification for bone regeneration

EndoBone

Beschreibung

Bone engraftment techniques to treat large bone defects involve implantation of allogenic bone grafts as a replacement tissue but are constrained on poor integration and functional anastomosis for ingrowth of vasculature from the host tissue. In proportionate many unresolved factors are to be addressed in advancing the clinical outcome for treating fracture non-unions, osteonecrosis, osteoporosis. Tissue engineering strategies hold promise in promoting bone regeneration. Nevertheless, the common approach in bone tissue engineering is by stimulating the osteogenesis route for regenerating bone which still remains an ineffective approach. Mimicking the natural process of bone formation through a developmental mechanism for formation of long bones called endochondral ossification has been envisioned from the commencement of research in the field of bone tissue engineering. In the current proposal, we propose a strategy for bone regeneration with naturally derived biomaterials incorporating extracellular matrix derived from cartilage (CD-ECM) as a template. We hypothesize that bone regeneration through a cartilaginous intermediate template onto solid biomaterials will produce a neotissue that mimics the native bone in its structure and functionality. To test this hypothesis we will compare bone regeneration from the proposed model to the gold-standard bone allografts used in clinics. CD-ECM incorporated biomaterials embedding hypertrophic chondrocytes are evaluated for their mineralized matrix formation in vitro with biochemical analysis and histological evaluation. Further, by non-destructive analysis micro-computed tomography (µCT) monitoring generated 3D segmented images and biomechanical testing of the scaffolds are evaluated together with computational finite element modelling simulations to determine the stiffness, strength of the engineered bone. The CD-ECM incorporated biomaterials are then implanted with or without hypertrophic chondrocytes ectopically in a mouse model for de novo mineralized matrix formation. The bone formation is further assessed by biochemical, µCT, biomechanical, computational modelling. This interdisciplinary approach would aid in a developmental engineering process instructing bioresponsive scaffolds to recapitulate native bone repair mechanisms.

Kooperationspartner

Endobone

Details

Projektzeitraum 01.01.2018 - 31.12.2020
Fördergeber Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Förderprogramm Life Science Call NFB
Department

Department für Gesundheitswissenschaften, Medizin und Forschung

Zentrum für Regenerative Medizin

Projekt­verantwortung (Donau-Universität Krems) Vivek Jeyakumar, PhD MSc
Projekt­mitarbeit Univ.-Prof. Dr. Stefan Nehrer Mag. Eugenia-Paulina Niculescu-Morzsa

Team

Vorträge

Enhancing the redifferentiation potential of OA chondrocytes in collagen type I hydrogels by supplementing platelet-derivatives

8th World congress of Biomechanics, 08.08.2019

Silk Fibroin Reinforced Decellularized Cartilage ECM Hybrid Scaffolds for Endochondral Bone Regeneration

Frontiers in Silk science and technology, Trento, Italy, 12.06.2019

Cartilage Derived Extracellular Matrix Incorporated Silk Fibroin Hybrid Scaffolds for Endochondral Ossification Mediated Bone Tissue Regeneration

TERMIS 2019 EU, Rhodes, Greece, 23.05.2019

Interchange in culture supplementation from human serum to platelet-rich plasma achieves both proliferation and matrix turnover of chondrocytes

5th TERMIS WORLD CONGRESS, Kyoto, Japan, 02.09.2018

Zum Anfang der Seite

 

Zum Glossar

Diese Website verwendet Cookies zur Verbesserung Ihrer Nutzererfahrung, für analytische Zwecke zur Optimierung unserer Systeme und für Marketingmaßnahmen. Indem Sie auf „OK" klicken bzw. die Website weiter verwenden, stimmen Sie der Cookie-Nutzung zu. Mehr Information zum Datenschutz.

OK