Description

Cemented carbides today find a wide range of applications and are tailor-made according to their tasks. Carbide can only be produced by powder metallurgy. The mechanical properties are determined by the composition and granularity of the carbide material, metal binder and any additives. In addition to hardness testing, density testing, structural analysis and porosity tests, non-destructive measurements of magnetization and coercive force are routinely used for quality control according to DIN-ISO 3326. These magnetic properties provide information on the structure, composition and contamination in the sintered state. Although the evaluation draws on a great deal of experience, the measurement results in binary or ternary systems with complex manufacturing processes are often not clearly interpretable. This project aims to make the magnetic characterization of cemented carbides and their conclusions on structural and mechanical properties more accurate. In addition to traditional measurements of M(H)-hysteresis, modern methods such as First-Order-Reversal-Curve (FORC) analysis and Artificial Intelligence (AI) for FORC diagrams will be added, which will make the interpretation more quantitative and clear. These measures raise the quality control in the cemented carbide production to a modern, future-oriented level. In the long term, that is, if enough data is available, the presented approaches could be used to create an auxiliary tool that could show new ways and strategies in cemented carbide production.

Details

Duration 01/01/2026 - 31/12/2028
Funding FFG
Department

Department for Integrated Sensor Systems

Center for Micro and Nano Sensors

Principle investigator for the project (University for Continuing Education Krems) Dr. Leoni Breth
Back to top