The aim of the work is the generation of an artificial surface based on scattering centers of metamaterials that lead to minimum scattering of electromagnetic waves due to a minimum interaction of the electromagnetic wave with the surface. The surfaces designed in such a way are reflectionless, refractionless and nonscattering and provide zero scattering width. This work aims to establish a concept that will make it easier to design artificial surfaces that are invisible at certain frequencies in the future. A mathematical model is to be found that shows the relationships between electromagnetic and geometric parameters, frequency and scattering width. The model will be used to examine different structures in terms of their suitability. Either analytically or numerically, geometric parameters are determined where the scattering width has a zero position at given frequencies. The analytical results will be compared to electromagnetic simulations. If structures with the desired properties are found, they can be produced in 3D printing processes and the functioning of the structures can be verified by experiments. ** This work is partially co-funded by the NÖ Forschungs- und Bildungsges.m.b.H. (NFB) within the PhD call.


Duration 01/10/2018 - 31/10/2019
Funding Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Program nfb

Department for Integrated Sensor Systems

Center for Water and Environmental Sensors

Principle investigator for the project (University for Continuing Education Krems) Dipl.-Ing. Dr. Martin Brandl
Project members Dipl.-Ing. Lisa-Marie Wagner, BSc
Back to top