Univ.-Doz.Dipl.-Ing.Dr. Thomas Schrefl
- thomas.schrefl@donau-uni.ac.at
- +43 2622 23420-20
-
+43 2622 23420-99 (Fax)
- To contact form
- TFZ Wiener Neustadt, Section E - Floor 2
- University for Continuing Education Krems
- Center for Modelling and Simulation
- Viktor Kaplan Straße 2 - Bauteil E
- 2700 Wiener Neustadt
- Austria
Projects (Extract Research Database)
Running projects
Magnetic Multiscale Modelling Suite
Duration: 01/01/2024–31/12/2027
Principle investigator for the project (University for Continuing Education Krems): Thomas Schrefl
Funding: EU
Multi-property Compositionally Complex Magnets for Advanced Energy Applications
Duration: 01/06/2023–31/05/2026
Principle investigator for the project (University for Continuing Education Krems): Thomas Schrefl
Funding: EU
Duration: 01/04/2023–31/03/2025
Principle investigator for the project (University for Continuing Education Krems): Thomas Schrefl
Funding: EU
Duration: 01/07/2022–30/06/2026
Principle investigator for the project (University for Continuing Education Krems): Thomas Schrefl
Funding: EU
Magnet design through physics informed machine learning
Duration: 01/09/2020–31/08/2027
Principle investigator for the project (University for Continuing Education Krems): Thomas Schrefl
Funding: Private (Stiftungen, Vereine etc.)
Duration: 01/01/2019–31/12/2021
Principle investigator for the project (University for Continuing Education Krems): Thomas Schrefl
Funding: FFG
Program: Produktion der Zukunft
Completed projects
Simumag - GFF Horizon Europe Start-up funding
Duration: 01/01/2022–30/03/2022
Principle investigator for the project (University for Continuing Education Krems): Thomas Schrefl
Funding: Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Duration: 01/03/2018–28/02/2022
Principle investigator for the project (University for Continuing Education Krems): Thomas Schrefl
Funding: EU
Program: Horizon 2020
Nanostructured multiphase permanent magnets
Duration: 01/04/2019–31/12/2020
Principle investigator for the project (University for Continuing Education Krems): Thomas Schrefl
Funding: sonstige öffentlich-rechtliche Einrichtungen (Körperschaften, Stiftungen, Fonds)
Atomistic Simulation of rare-earth reduced permanent magnets
Duration: 01/11/2017–31/12/2019
Principle investigator for the project (University for Continuing Education Krems): Thomas Schrefl
Funding: Unternehmen
NOVel, critical materials free, high Anisotropy phases for permanent MAGnets, by design
Duration: 01/04/2016–30/09/2019
Principle investigator for the project (University for Continuing Education Krems): Thomas Schrefl
Funding: EU
Program: H2020
Multiscale simulations of magnetic nanostructures
Duration: 01/01/2015–30/06/2019
Principle investigator for the project (University for Continuing Education Krems): Thomas Schrefl
Funding: FWF
Program: FWF
Nanostructured multiphase permanent magnets
Duration: 01/04/2018–31/03/2019
Principle investigator for the project (University for Continuing Education Krems): Thomas Schrefl
Funding: Sonstige
NanoStructured Multiphase Permanent Magnets
Duration: 01/04/2017–31/03/2018
Principle investigator for the project (University for Continuing Education Krems): Thomas Schrefl
Funding: andere internationale Organisationen
Nano-Structured Multi-Phase Permanent Magnets II
Duration: 01/04/2016–31/03/2017
Principle investigator for the project (University for Continuing Education Krems): Thomas Schrefl
Funding: andere internationale Organisationen
CREST III Simulation of hard magnet magnetic materials
Duration: 01/04/2016–31/03/2017
Principle investigator for the project (University for Continuing Education Krems): Thomas Schrefl
Funding: andere internationale Organisationen
Program: CREST
Publications (Extract Research Database)
Brueckl, H.; Breth, L.; Fischbacher, J.; Schrefl, T.; Kuehrer, S.; Pachlhofer, J.; Schwarz, M.; Weirather, T.; Czettl, C. (2024). Machine learning based prediction of mechanical properties of WC-Co cemented carbides from magnetic data only. International Journal of Refractory Metals and Hard Materials, Vol. 121: 106665
Gusenbauer, M.; Stanciu, S.; Kovacs, A.; Oezelt, H.; Fischbacher, J.; Zhao, P.; Woodcock, T. G.; Schrefl, T.; Stanciu S. (2024). Micromagnetic study of grain junctions in MnAl-C containing intergranular inclusions. Elsevier Journal of Magnetism and Magnetic Materials, Vol. 606: 172390
Kovacs, A.; Exl, L.; Kornell, A.; Fischbacher, J.; Hovorka, M.; Gusenbauer, M.; Breth, L.; Oezelt, H.; Yano, M.; Sakuma, N.; Kinoshita, A.; Shoji, T.; Kato, A.; Schrefl, T. (2024). Image-based prediction and optimization of hysteresis properties of nanocrystalline permanent magnets using deep learning. Journal of Magnetism and Magnetic Materials, Vol. 596: 171937
Moustafa, H.; Kovacs, A.; Fischbacher, J.; Gusenbauer, M.; Ali, Q.; Breth, L.; Hong, Y.; Rigaut, W.; Devillers, T.; Dempsey, N. M.; Schrefl, T.; Özelt, H. (2024). Reduced Order Model for Hard Magnetic Films. AIP Advances, Vol. 14, iss. 2: 025001-1 bis 025001-5
de Moraes, I. G.; Fischbacher, J.; Hong, Y.; Naud, C.; Okuno, H.; Masseboeuf, A.; Devillers, T.; Schrefl, T.; Dempsey, N. M. (2024). Nanofabrication, characterisation and modelling of soft-in-hard FeCo–FePt magnetic nanocomposites. Acta Materialia, Vol. 274: 119970
Breth, L.; Fischbacher, J.; Kovacs, A.; Özelt, H.; Schrefl, T.; Brückl, H.; Czettl, C.; Kührer, S.; Pachlhofer, J., Schwarz, M. (2023). FORC diagram features of Co particles due to reversal by domain nucleation. Journal of Magnetism and Magnetic Materials 571 (2023) 170567 Available online 24 February 2023 0304-8853/© 2023 Elsevier B.V. All rights reserved.Contents lists available at ScienceDirect Journal of Magnetism and Magnetic Materials, Vol. 571: 1-6
Breth, L.; Schrefl, T.; Fischbacher, J.; Oezelt, H.; Kovacs, A.; Czettl, C.; Pachlhofer, J.; Schwarz, M.; Brueckl, H. (2023). Micromagnetic simulations as a tool for bottom-up explainability of FORC diagrams. Proceedings in AIM IEEE Advances in Magnetics 2023, Vol. 1: 1
Kovacs, A.; Fischbacher, J.; Oezelt, H.; Kornell, A.; Ali, Q.; Gusenbauer, M.; Yano, M.; Sakuma, N.; Kinoshita, A.; Shoji, T.; Kato, A.; Hong, Y.; Grenier, S.; Devillers, T.; Dempsey, N. M.; Fukushima, T.; Akai, H.; Kawashima, N.; Miyake, T.; Schrefl, T. (2023). Physics-Informed Machine Learning Combining Experiment and Simulation for the Design of Neodymium-Iron-Boron Permanent Magnets with Reduced Critical-Elements Content. Frontiers in Materials 2023, Vol. 9: 1-19
Okabe, R.; Li, M.; Iwasaki, Y.; Regnault N.; Felser, C.; Shirai, M.; Kovacs, A.; Schrefl, T.; Hirohata, A. (2023). Materials Informatics for the Development and Discovery of Future Magnetic Materials. IEEE Magnetics Letters, vol. 14: 1-5
Schaffer, S.; Schrefl, T.; Oezelt, H.; Kovacs, A.; Breth, L.; Mauser, N.J.; Suess, D.; Exl, L. (2023). Physics-informed machine learning and stray field computation with application to micromagnetic energy minimization. Journal of Magnetism and Magnetic Materials, 576: 170761
Yamano, H.; Kovacs, A.; Fischbacher, J.; Danno, K.; Umetani, Y.; Shoji, T.; Schrefl, T. (2023). Efficient optimization approach for designing power device structure using machine learning. Japanese Journal of Applied Physics, Vol. 1: 1-17
Zhao, P.; Gusenbauer, M.; Oezelt, H.; Wolf, D.; Gemming, T.; Schrefl, T.; Nielsch, K.; Woodcock, T. G. (2023). Nanoscale chemical segregation to twin interfaces in t -MnAl-C and resulting effects on the magnetic properties. Journal of Materials Science & Technology, Vol. 134: 22-32
Ali, Q.; Fischbacher, J.; Kovacs, A.; Oezelt, H.; Gusenbauer, M.; Yano, M.; Sakuma, N.; Kinoshita, A.; Shoji, T.; Kato, A.; Schrefl, T. (2023). Benchmarking for systematic coarse-grained micromagnetics. In: HMM, proceedings in 13th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2023): 1, HMM, WIen
Fischbacher, J.; Schrefl, T.; Moraes, I.; Dempsey, N. (2023). Micromagnetic modelling of soft-in-hard FeCo-FePt nanocomposites. In: HMM, proceedings in 13th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2023): 1, HMM, Wien
Gusenbauer, M.; Oezelt, H.; Kovacs, A.; Fischbacher, J.; Zhao, P.; Woodcock, T.-G.; Schrefl, T. (2023). Magnetization reversal of large granular magnetic materials. In: HMM, proceedings in 13th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2023): 1, HMM, Wien
Hrushko, O.; Schrefl, T. (2023). Some approaches for estimating thermal residual stresses in a polycrystalline Nd2Fe14B magnet. In: HMM, proceedings in 13th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2023): 1, HMM, Wien
Kovacs, A.; Fischbacher, J.; Oezelt, H.; Ali, Q.; Gusenbauer, M.; Schrefl, T. (2023). Finite Hex Element Adaptive Mesh Refinement of Demagnetizing Field Computation. In: HMM, proceedings in 13th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2023): 1, HMM, Wien
Oezelt, H.; Kovacs, A.; Breth, L.; Gusenbauer, M.; Schaffer, S.; Exl, L.; Schrefl. T. (2023). Machine learning based optimization of hard-/soft magnetic nanostructures. In: HMM, proceedings in 13th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2023): 1, HMM, Wien
Wager, C.; Kovacs, A.; Schrefl, T. (2023). Active Learning Scheme vs Conventional Optimization - developing a Python Framework. In: HMM, proceedings in 13th International Symposium on Hysteresis Modeling and Micromagnetics (HMM 2023): 1, HMM, Wien
Ali, Q.; Fischbacher, J.; Kovacs, A.; Oezelt, H.; Gusenbauer, M.; Moustafa, H.; Böhm, D.; Breth, L.; Schrefl, T. (2023). Defect Manipulation for the Coercivity Enhancement of Nd-Fe-B Permanent Magnets. SSRN, 2023: 4628986, Elesevier
Lectures (Extract Research Database)
MATERIALS INFORMATICS FOR PERMANENT MAGNET DESIGN
The 4th DXMaG Seminar, 06/12/2023
Materials informatics for permanent magnet design
Materials Innovation Strategy Symposium 2023, 05/12/2023
Modelling Magnets: From Atoms to Bulk Properties
Biomagnetic Sensing Seminar, 16/11/2023
Spotting the next big idea
68th Annual Conference on Magnetism and Magnetic Materials, 02/11/2023
Talking about magnets – information retrieval with large language models
68th Annual Conference on Magnetism and Magnetic Materials, 31/10/2023
The coercivity of permanent magnets: Insights from micromagnetics and machine learning
Physics of Magnetism 2023, 30/06/2023
Magnetization reversal of large granular magnetic materials
HMM 2023, 05/06/2023
Multiscaling strategies in computational magnet design
Going Green – CARE INNOVATION 2023, 11/05/2023
Generative deep learning for permanent magnet microstructures
67th Annual Conference on Magnetism and Magnetic Materials (MMM 2022), 03/11/2022
How to Create an Effective Scientific Video Presentation
67th Annual Conference on Magnetism and Magnetic Materials (MMM 2022), 02/11/2022