Thomas Schrefl

Projekte (Auszug Forschungs­datenbank)

Laufende Projekte

Multi-property Compositionally Complex Magnets for Advanced Energy Applications

Projektzeitraum: 01.06.2023–31.05.2026
Projektverantwortung (Universität für Weiterbildung Krems): Thomas Schrefl
Fördergeber: EU

Zu Favoriten hinzufügen

Entwicklung phänomenologischer Ansätze für die Modellierung und Simulation der mechanischen Eigenschaften polykristalliner magnetischer Materialien

Projektzeitraum: 01.04.2023–31.03.2025
Projektverantwortung (Universität für Weiterbildung Krems): Thomas Schrefl
Fördergeber: EU

Zu Favoriten hinzufügen

Resilient and sustainable critical raw materials REE supply chains for the e-mobility and renewable energy ecosystems and strategic sectors

Projektzeitraum: 01.07.2022–30.06.2026
Projektverantwortung (Universität für Weiterbildung Krems): Thomas Schrefl
Fördergeber: EU

Zu Favoriten hinzufügen

Magnet design through physics informed machine learning

Projektzeitraum: 01.09.2020–31.08.2027
Projektverantwortung (Universität für Weiterbildung Krems): Thomas Schrefl
Fördergeber: Private (Stiftungen, Vereine etc.)

Zu Favoriten hinzufügen

Highly-localized, non-invasive magnetic sensing of multiferroic probes enabled by novel AFM-based characterization tools

Projektzeitraum: 01.01.2019–31.12.2021
Projektverantwortung (Universität für Weiterbildung Krems): Thomas Schrefl
Fördergeber: FFG
Förderprogramm: Produktion der Zukunft

Zu Favoriten hinzufügen

Abgeschlossene Projekte

Simumag - GFF Horizon Europe Anbahnungsfinanzierung

Projektzeitraum: 01.01.2022–30.03.2022
Projektverantwortung (Universität für Weiterbildung Krems): Thomas Schrefl
Fördergeber: Bundesländer (inkl. deren Stiftungen und Einrichtungen)

Zu Favoriten hinzufügen

High Performance Fan

Projektzeitraum: 01.03.2018–28.02.2022
Projektverantwortung (Universität für Weiterbildung Krems): Thomas Schrefl
Fördergeber: EU
Förderprogramm: Horizon 2020

Zu Favoriten hinzufügen

Nanostructured multiphase permanent magnets

Projektzeitraum: 01.04.2019–31.12.2020
Projektverantwortung (Universität für Weiterbildung Krems): Thomas Schrefl
Fördergeber: sonstige öffentlich-rechtliche Einrichtungen (Körperschaften, Stiftungen, Fonds)

Zu Favoriten hinzufügen

Atomistic Simulation of rare-earth reduced permanent magnets

Projektzeitraum: 01.11.2017–31.12.2019
Projektverantwortung (Universität für Weiterbildung Krems): Thomas Schrefl
Fördergeber: Unternehmen

Zu Favoriten hinzufügen

NOVel, critical materials free, high Anisotropy phases for permanent MAGnets, by design

Projektzeitraum: 01.04.2016–30.09.2019
Projektverantwortung (Universität für Weiterbildung Krems): Thomas Schrefl
Fördergeber: EU
Förderprogramm: H2020

Zu Favoriten hinzufügen

Vicom Multiscale simulations of magnetic nanostructures

Projektzeitraum: 01.01.2015–30.06.2019
Projektverantwortung (Universität für Weiterbildung Krems): Thomas Schrefl
Fördergeber: FWF
Förderprogramm: FWF

Zu Favoriten hinzufügen

Nanostructured multiphase permanent magnets

Projektzeitraum: 01.04.2018–31.03.2019
Projektverantwortung (Universität für Weiterbildung Krems): Thomas Schrefl
Fördergeber: Sonstige

Zu Favoriten hinzufügen

NanoStructured Multiphase Permanent Magnets

Projektzeitraum: 01.04.2017–31.03.2018
Projektverantwortung (Universität für Weiterbildung Krems): Thomas Schrefl
Fördergeber: andere internationale Organisationen

Zu Favoriten hinzufügen

CREST III Simulation of hard magnet magnetic materials

Projektzeitraum: 01.04.2016–31.03.2017
Projektverantwortung (Universität für Weiterbildung Krems): Thomas Schrefl
Fördergeber: andere internationale Organisationen
Förderprogramm: CREST

Zu Favoriten hinzufügen

Nano-Structured Multi-Phase Permanent Magnets II

Projektzeitraum: 01.04.2016–31.03.2017
Projektverantwortung (Universität für Weiterbildung Krems): Thomas Schrefl
Fördergeber: andere internationale Organisationen

Zu Favoriten hinzufügen
Mehr laden
von

Publikationen (Auszug Forschungs­datenbank)

Breth, L.; Fischbacher, J.; Kovacs, A.; Özelt, H.; Schrefl, T.; Brückl, H.; Czettl, C.; Kührer, S.; Pachlhofer, J., Schwarz, M. (2023). FORC diagram features of Co particles due to reversal by domain nucleation. Journal of Magnetism and Magnetic Materials 571 (2023) 170567 Available online 24 February 2023 0304-8853/© 2023 Elsevier B.V. All rights reserved.Contents lists available at ScienceDirect Journal of Magnetism and Magnetic Materials, Vol. 571: 1-6

Kovacs, A.; Fischbacher, J.; Oezelt, H.; Kornell, A.; Ali, Q.; Gusenbauer, M.; Yano, M.; Sakuma, N.; Kinoshita, A.; Shoji, T.; Kato, A.; Hong, Y.; Grenier, S.; Devillers, T.; Dempsey, N. M.; Fukushima, T.; Akai, H.; Kawashima, N.; Miyake, T.; Schrefl, T. (2023). Physics-Informed Machine Learning Combining Experiment and Simulation for the Design of Neodymium-Iron-Boron Permanent Magnets with Reduced Critical-Elements Content. Frontiers in Materials 2023, Vol. 9: 1-19

Yamano, H.; Kovacs, A.; Fischbacher, J.; Danno, K.; Umetani, Y.; Shoji, T.; Schrefl, T. (2023). Efficient optimization approach for designing power device structure using machine learning. Japanese Journal of Applied Physics, Vol. 1: 1-17

Zhao, P.; Gusenbauer, M.; Oezelt, H.; Wolf, D.; Gemming, T.; Schrefl, T.; Nielsch, K.; Woodcock, T. G. (2023). Nanoscale chemical segregation to twin interfaces in t -MnAl-C and resulting effects on the magnetic properties. Journal of Materials Science & Technology, Vol. 134: 22-32

Heistracher, P.; Abert, C.; Bruckner, F.; Schrefl, T.; Suess, D. (2022). Proposal for a micromagnetic standard problem: domain wall pinning at phase boundaries. Journal of Magnetism and Magnetic Materials, Vol. 548: 168875

Kovacs, A.; Exl, L.; Kornell, A.; Fischbacher, J.; Hovorka, M.; Gusenbauer, M.; Breth, L.; Oezelt, H.; Yano, M.; Sakuma, N.; Kinoshita, A.; Shoji, T.; Kato, A.; Schrefl, T. (2022). Conditional physics informed neural networks. Communications in Nonlinear Science and Numerical Simulation, Vol. 104: 106041

Kovacs, A.; Exlc, L.; Kornell, A.; Fischbacher, J.; Hovorka, M.; Gusenbauer, M.; Breth, L.; Oezelt, H.; Praetorius, D.; Suess, D.; Schrefl, T. (2022). Magnetostatics and micromagnetics with physics informed neural networks. Journal of Magnetism and Magnetic Materials, Vol. 548: 168951

Mohapatra, J.; Fischbacher, J.; Gusenbauer, M.; Xing, M. Y.; Elkins, J.; Schrefl, T.; Liu, J. P. (2022). Coercivity limits in nanoscale ferromagnets. Phys. Rev. B, Vol. 105, Iss. 21: 214431

Oezelt, H.; Qu, L.; Kovacs, A.; Fischbacher, J.; Gusenbauer, M.; Beigelbeck, R.; Praetorius, D.; Yano, M.; Shoji, T.; Kato, A.; Chantrell, R.; Winklhofer, M.; Zimanyi, G.; Schrefl, T. (2022). Full- Spin-Wave-Scaled Stochastic Micromagnetism for Mesh-Independent Simulations of Ferromagnetic Resonance and Reversal. npj Computational Materials, Vol. 8: 35

Zhao, P.; Gusenbauer, M.; Oezelt, H.; Wolf, D.; Gemming, T.; Schrefl, T.; Nielsch, K.; Woodcock, T. G. (2022). Nanoscale chemical segregation to twin interfaces in t-MnAl-C and resulting effects on the magnetic properties. Journal of Materials Science & Technology, Vol. 134: 22-32

Cuadrado, R.; Evans, R. F. L.; Shoji, T.; Yano, M.; Kato, A.; Ito, M.; Hrkac, G.; Schrefl, T.; Chantrell, R.W. (2021). First principles and atomistic calculation of the magnetic anisotropy of Y2Fe14B. JOURNAL OF APPLIED PHYSICS, 130: 023901

Ener, S.; Skokov, K. P.; Palanisamy, D.; Devillers, T.; Fischbacher, J.; Eslavac, G.; Maccaria, F.; Schäfer, L.; Diop, L.; Radulov, I.; Gault, B.; Hrkac, G.; Dempsey, N.; Schrefl, T.;Raabe, D.; Gutfleisch, O. (2021). Twins – A weak link in the magnetic hardening of ThMn12-type permanent magnets. Acta Materialia, Vol. 214: 116968

Exl, L.; Mauser, N. J.; Schaffer, S.; Schrefl, T.; Suess, D.; (2021). Prediction of magnetization dynamics in a reduced dimensional feature space setting utilizing a low-rank kernel method. JOURNAL OF COMPUTATIONAL PHYSICS, 444: 110586

Gusenbauer, M.; Kovacs, A.; Özelt, H.; Fischbacher, J.; Zhao, P.; Woodcock, T.G.;Schrefl, T. (2021). Insights into MnAl-C nano-twin defects by micromagnetic characterization. Journal of Applied Physics, 129(9): 093902

Perna, S.; Schrefl, T.; Serpico, C.; Fischbacher, J.; Del Pizzo, A. (2021). Microstructure Role in Permanent Magnet Eddy Current Losses. IEEE TRANSACTIONS ON MAGNETICS, 57: 6300405

Tsuchiura, H.; Yoshioka, T.; Novák, P.; Fischbacher, J.; Kovacs, A.; Schrefl, T. (2021). First-principles calculations of magnetic properties for analysis of magnetization processes in rare-earth permanent magnets". Science and Technology of Advanced Materials (STAM), Vol. 22, no. 1: 748-757

Exl, L.; Mauser, N.; Schrefl, T.; Suess, D. (2020). Learning time-stepping by nonlinear dimensionality reduction to predict magnetization dynamics. Communications in Nonlinear Science and Numerical Simulation, Vol. 84: 105205

Gusenbauer, G.; Oezelt, H.; Fischbacher, J.; Kovacs, A.; Zhao, P.; Woodcock, T. G.; Schrefl, T. (2020). Extracting local switching fields in permanent magnets using machine learning. npj Computational Materials, 6: 89ff

Kovacs, A.; Fischbacher, J.; Gusenbauer, M.; Oezelt, H.; Herper, H. C.; Vekilova, O. Y.; Nieves, P.; Arapan, S.; Schrefl, T. (2020). Computational design of rare-earth reduced permanent magnets. Engineering, 6: 148

Schönhöbel, A.M.; Madugundo, R.; Barandiarán, J.M.; Hadjipanayis, G.C.; Palanisamy, D.; Schwarz, T.; Gault, B.; Raabe, D.; Skokov, K.; Gutfleisch, O.; Fischbacher, J.; Schrefl, T. (2020). Nanocrystalline Sm-based 1:12 magnets. Acta Materialia, Vol. 200: 652-658

Mehr laden
von

Vorträge (Auszug Forschungs­datenbank)

Generative deep learning for permanent magnet microstructures

67th Annual Conference on Magnetism and Magnetic Materials (MMM 2022), 03.11.2022

How to Create an Effective Scientific Video Presentation

67th Annual Conference on Magnetism and Magnetic Materials (MMM 2022), 02.11.2022

Materials Informatics for the Design of Rare-Earth Reduced Permanent Magnets

Magnetic Materials and Applications 22, 26.10.2022

Magnetization processes in SmFeO3

DPG Frühjahrstagung, 06.09.2022

Machine Learning Analysis of Multiphase Magnetic Microstructures

CIMTEC 2022, 23.06.2022

Physics informed neural networks for computational magnetism

MMM-Intermag 2022, 10.01.2022

Inverse design of Nd-substituted permanent magnets

Physics and the green economy, 25.11.2021

Tutorial: An introduction to machine learning for solving micromagnetic problems

The 2021 Around-the-Clock Around-the-Globe Magnetics Conference, 24.08.2021

Deep learning magnetization dynamics

IEEE Advances in Magnetism 2021, 16.06.2021

New trends for machine learning in permanent magnet design

The 26th International Workshop on Rare Earth and Future Permanent Magnets and Their Application, 10.06.2021

Machine Learning for Relating Structure and Coercivity of Permanent Magnets

Virtual REPM 2021, 09.06.2021

Machine learning, micromagnetics and magnet design

University of York, Computational Magnetism, 02.12.2020

Finding weak spots in permanent magnets through micromagnetism and machine learning

CMD2020GEFES, 02.09.2020

Computational Design of Bulk Permanent Magnet

TMS2020, 25.02.2020

Bridging the gap between biomedical applications and material sciences

3rd Workshop on Modelling of Biological Cells, Fluid Flow and Microfluidics, 11.02.2020

Advancing permanent magnets by machine learning

Meeting of CRC/TRR 270 - Hysteresis design of magnetic materials for efficient energy conversion, 05.02.2020

Computer based optimization of permanent magnets

Seminar, CEA, Grenoble, 17.12.2019

Learning Magnetization Dynamics

64th Annual Conference on Magnetism and Magnetic Material, Las Vegas, USA, 07.11.2019

Machine learning for permanent magnet optimization

2019 - Sustainable Industrial Processing Summit & Exhibition, Paphos, Cryprus, 26.10.2019

Micromagnetic optimization of permanent magnetic materials

27th International Conference on Materials and Technology, Portoroz, Slovenia, 17.10.2019

Mehr laden
von
Zum Anfang der Seite