Univ.-Doz.Dipl.-Ing.Dr. Thomas Schrefl

Donau-Universität Krems

Thomas Schrefl

Projekte (Auszug Forschungs­datenbank)

Publikationen (Auszug Forschungs­datenbank)

Arapan, S.; Nieves, P.; Cuesta-López, S.; Gusenbauer, M.; Oezelt, H.; Schrefl, T.; Delczeg-Czirjak, E. K.; Herper, H. C.; Eriksson, O. (2019). Influence of antiphase boundary of the MnAl t-phase on the energy product. Physical Review Materials, Vol. 3, iss. 6: 064412

Exl, L.; Fischbacher, J.; Kovacs, A.; Oezelt, H.; Gusenbauer, M.; Schrefl, T. (2019). Preconditioned nonlinear conjugate gradient method for micromagnetic energy minimization. Computer Physics Communications, 235: 179/https://doi.org/10.1016/j.cpc.2018.09.004

Gusenbauer, M.; Fischbacher, J.; Kovacs, A.; Oezelt, H.; Bance, S.; Zhao, P.; Woodcock, T.G.; Schrefl, T. (2019). Automated meshing of electron backscatter diffraction data and application to finite element micromagnetics. Journal of Magnetism and Magnetic Materials, Volume 486: 165256

Skelland, C.; Ostler, T.; Westmoreland, S.C.; Evans, R.F.L.; Chantrell, R.W.; Yano, M.; Shoji, T.; Kato, A.; Winkelhofer, M., Zimanyi, G.; Fischbacher, J.; Schrefl, T.; Hrkac, G. (2019). The Effect of Interstitial Nitrogen Addition on the Structural Properties of Supercells of NdFe12-xTix. IEEE Transactions on Magnetics, Vol. 55, iss. 10: 6700205

Soderznik, M.; Li, J.; Liu, L.; Sepehri-Amin, H.; Ohkubo, T.; Sakuma, N.; Shoji, T.; Kato, A.; Schrefl, T.; Hono, K. (2019). Magnetization reversal process of anisotropic hot-deformed magnets observed by magneto-optical Kerr effect microscopy. Journal of Alloys and Compounds, 771: 51/https://doi.org/10.1016/j.jallcom.2018.08.231

Exl, L.; Fischbacher, J.; Kovacs, A.; Oezelt, H.; Gusenbauer, M.; Yokota, K.; Shoji, T., Hrkac, G.; Schrefl, T.; (2018). Magnetic microstructure machine learning analysis. JPhys Materials, 2: 014001/https://doi.org/10.1088/2515-7639/aaf26d

Fischbacher, J.; Kovacs, A.; Exl, L.; Kühnel, J.; Mehofer, E.; Sepehri-Amin, H.; Ohkubo, T.; Hono, K.; Schrefl, T. (2018). Searching the weakest link: Demagnetizing fields and magnetization reversal in permanent magnets. Scripta Materialia, 154: 253/https://doi.org/10.1016/j.scriptamat.2017.11.0

Fischbacher, J.; Kovacs, A.; Gusenbauer, M.; Oezelt, H.; Exl, L.; Bance, S.; Schrefl, T. (2018). Micromagnetics of rare-earth efficient permanent magnets. Journal of Physics D: Applied Physics, Vol. 51, no. 19: 193002-193019

Gusenbauer, M.; Mazza, G.; Posnicek, T.; Brandl, M.; Schrefl, T. (2018). Magnetically actuated circular displacement micropump. The International Journal of Advanced Manufacturing Technology, 95: 3575/https://doi.org/10.1007/s00170-017-1440-5

Gusenbauer, M.; Schrefl, T. (2018). Simulation of magnetic particles in microfluidic channels. Journal of Magnetism and Magnetic Materials, Volume 446: 185-191

Gusenbauer, M.; Tothova, R.; Mazza, G.; Brandl, M.; Schrefl, T.; Jancigova, I.; Cimrak, I. (2018). Cell Damage Index as Computational Indicator for Blood Cell Activation and Damage. Artificial Organs, Volume 42, Issue 7: 746-755

Li, J.; Lihua, L.; Sepehri-Amin, H.; Tang, X.; Ohkubu, T.; Sakuma, N.; Shoji, T.; Kato, A.; Schrefl, T.; Hono, J. (2018). Coercivity and its thermal stability of NdFeB hot-deformed magnets enhanced by the eutectic grain boundary diffusion process. Acta Materialia, 141: 171/https://doi.org/10.1016/j.actamat.2018.09.018

Mitin, D.; Kovacs, A.; Schrefl, T.; Ehresmann, A.; Holzinger, D.; Albrecht, M. (2018). Magnetic properties of artificially designed magnetic stray field landscapes in laterally confined exchange-bias layers. Nanotechnology, Vol. 29: 355708

Skelland, C.; Ostler, T.; Westmoreland, S.C.; Evans, R.F.L.; Chantrell, R.W.; Yano, M.; Shoji, T.; Kato, A.; Winklhofer, M.; Zimanyi, G.; Fischbacher, J.; Schrefl, T.; Hrkac, G. (2018). Probability Distribution of Substituted Titanium in RT12(R = Nd and Sm; T = Fe and Co) Structures. IEEE Transactions on Magnetics, 54: 18191571 /10.1109/TMAG.2018.2832603

Suess, D.; Bachleitner-Hofmann, A.; Satz, A.; Weitensfelder, H.; Vogler C.; Bruckner, F.; Abert, C.; Prügl, K.; Zimmer, J.; Huber, C.; Luber, S.; Raberg, W.; Schrefl, T.; Brückl, H. (2018). Topologically Protected Vortex Structures to Realize Low-Noise Magnetic Sensors with High Linear Range. Nature Electronics, Vol. 1: 362-370

Tang, X.; Sepehri-Amin, H.; Ohkubo, T.; Yano, M.; Ito, M.; Kato, A.; Sakuma, N.; Shoji, T.; Schrefl, T.; Hono, K. (2018). Coercivity enhancement of hot-deformed Ce-Fe-B magnets by grain boundary infiltration of Nd-Cu eutectic alloy. Acta Materialia, 144: 884-895

Westmoreland, S. C.; Evans, R. F. L.; Hrkac, G.; Schrefl, T.; Zimanyi, G. T.; Winklhofer, M.; Sakuma, N.; Yano, M.; Kato, A.; Shoji, T.; Manabe, A.; Ito, M.; Chantrell, R. W. (2018). Multiscale model approaches to the design of advanced permanent magnets. Scripta Materialia, Vol. 148: 56-62

Xu, X.D.; Sasaki, T.T.; Li, J.N.; Dong, Z.J.; Sepehri-Amin, H.; Kim, T.H.; Ohkubo, T.; Schrefl, T.; Hono, K.; (2018). Microstructure of a Dy-free Nd-Fe-B sintered magnet with 2?T coercivity. Acta Materialia, 156: 146/https://doi.org/10.1016/j.actamat.2018.06.037

Bachleitner-Hofmann, A.; Bergmair, B.; Schrefl, T.; Satz, A.; Suess, D. (2017). Soft magnetic properties of thin nanocrystalline particles due to the interplay of random and coherent anisotropies. IEEE Transaction on Magnetics, 53(11): DOI: 10.1109/TMAG.2017.2695580

Bance, S.; Bittner, F.; Woodcock, T. G.; Schultz, L.; Schrefl, T. (2017). Role of twin and anti-phase defects in MnAl permanent magnets. Acta Materialia, 131: 48-56

Mehr laden

Vorträge (Auszug Forschungs­datenbank)

Micromagnetic characterization of MnAl-C using trained neural networks

JEMS2019, Uppsala, Schweden, 29.08.2019

Ferromagnetic resonance simulations for stochastic Landau-Lifshitz-Gilbert equation

The Joint European Magnetic Symposia (JEMS), Uppsala, Sweden, 29.08.2019

Simulation of permanent magnets across the length scales

Functional Materials Colloquium, TU Darmstadt, 26.10.2018

Automated micromagnetic simulations from Electron Backscatter Diffraction data

JEMS 2018, 05.09.2018

Computational design of rare-earth reduced permanent magnets

Rare-earth and future permanent magnets and their applications REPM2018, Beijing, China, 28.08.2018

Energy Barriers in Nano-structured Permanent Magnets

Conference on Mathematical Aspects of Materials Science, Portland Oregon, USA, 10.07.2018

Recent advances in micromagnetic modelling of permanent magnets

8th Forum of new materials, Perugia, Italy, 12.06.2018

Activation volume and structural defects in permanent magnets

Future perspectives on novel magnetic materials, Santorini, Greece, 01.06.2018

Microstructure optimization for permanent magnets

MRS Spring Meeting 2018, Phoenix, USA, 03.04.2018

Structure properties and thermal stability by micromagnetics simulations

TMS2018: Design of Novel Magnetic Materials by Modelling and Advanced Synthesis and Characterization Workshop, 11.03.2018

Computational magnetism across the length scales

Cali School of Magnetism, 01.03.2018

Micromagnetic basics: From theory to applications

Cali School of Magnetism, 28.02.2018

Sensing the blood cell damage in a magnetically actuated circular pump

IEEE Sensors 2017, 01.11.2017

Thermally induced switching in permant magnets

ZIF WORKSHOP Stochastic Spin Systems: models, theory, simulation and real world applications, 30.09.2017

Simulation and Theory

IEEE Magnetics Summer School, 23.06.2017

Computational design of multiphase permanent magnets

Tohoku Forum for Creativity, 31.05.2017

Model-Based Design and Optimization of Microfluidic Systems for Gentle Cellular Perfusion

Sensor2017 Nürnberg, 31.05.2017

Conjugate gradient methods for micromagnetics

Intermag Conference 2017, 27.04.2017

Micromagnetics of magnetization reversal in permanent magnets: Nucleation and pinning in focus

3N-Lab Workshop on permanent magnets, 24.03.2017

Demagnetizing Fields and Magnetization Reversal in Permanent Magnets

TMS 2017, 28.02.2017

Mehr laden
Zum Anfang der Seite


Zum Glossar

Diese Website verwendet Cookies zur Verbesserung Ihrer Nutzererfahrung, für analytische Zwecke zur Optimierung unserer Systeme und für Marketingmaßnahmen. Indem Sie auf „OK" klicken bzw. die Website weiter verwenden, stimmen Sie der Cookie-Nutzung zu. Mehr Information zum Datenschutz.