Beschreibung

Permanentmagnete sind eine Schlüsseltechnologie für die moderne Gesellschaft mit Anwendungen in der Klimatisierung, Mobilität oder Energieerzeugung. Die gemessenen Koerzitivfelder in modernen Permanentmagneten erreichen nur einen kleinen Bruchteil der theoretischen Werte. Eine Reihe von experimentellen Studien haben gezeigt, dass Diskontinuitäten und Fehlausrichtungen auf atomarer Ebene die makroskopische Koerzitivfeldstärke signifikant beeinflussen. In diesem Projekt entwickeln wir eine quantitative Theorie der Koerzitivfeldstärke unter Berücksichtigung der lokalen atomaren Struktur, der räumlichen Variation der intrinsischen magnetischen Eigenschaften und der physikalischen Mikrostruktur des Magneten. Um dieses Ziel zu erreichen, überbrücken wir die Längenskala zwischen ab-initio-Simulationen, atomistischer Spindynamik und Kontinuum-Mikromagnetsimulationen. Atomare Defekte an Grenzflächen und Korngrenzen werden bereits auf der kleinstmöglichen Längenskala, den Einheitszellen der Materialzusammensetzung, berücksichtigt. Die entwickelte Theorie wird von gut beschriebenen magnetischen Materialien geleitet, um das System während des gesamten Projektverlaufs zu validieren.

Details

Projektzeitraum 01.11.2022 - 31.10.2025
Fördergeber FWF
Department

Department für Integrierte Sensorsysteme

Zentrum für Modellierung und Simulation

Projekt­verantwortung (Universität für Weiterbildung Krems) Dipl.-Ing.(FH) Dr. Markus Gusenbauer
Zum Anfang der Seite