Tribocorrosion

Center for Regenerative Medicine

Description

Osteoarthritis is among the most important pathologies in humanity and leads to immobility and pain. The current trend focuses on replacing total joint replacements in patients by less aggressive partial options with the aim of boosting patient recovery and increase their quality of life. Although this surgery is smaller and partial replacement concepts allow faster rehabilitation, the rates of failures are significantly higher than after total joint replacement. This is related to the progressive degeneration of the preserved area of joint surface that remains after partial replacement or loosening or biomechanic insufficiency of the implant. However, there is little research done on the tribological behaviour of articular cartilage and adjacent metal implants with respect to the influence of wear on the remaining cartilage or inflammatory reaction of the existing cartilage on the residing implant or other phenomena that might occur like corrosion. Within this context, the present work aims to assess the mechanical and physiological parameters that determine the lifetime of partial replacement technology. The project will address the role of bio-tribocorrision on partial replacements during sliding contact against cartilage due to the combined effect of mechanical wear and corrosion, with emphasis on Cobalt ion release. Further, chondrocyte viability at the interface between the cobalt-chrome-molybdenum metal surface and the cartilage will be correlated with biomechanical and physiological parameters. Complementary investigations will be performed on chondrocyte cells in-vitro with the aim of determining critical loading parameters for chondrocyte viability. The results will serve as basis for evaluating the effects of partial implant on cartilage biology as well as synovial fluid in order to optimize the concept of partial joint replacements. This project is funded by the NFB (NÖ Forschungs- und Bildungsges.m.b.H.).

Cooperation partner

 

Details

Duration 01/01/2017 - 31/12/2019
Funding Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Program Life Science Call NFB
Department

Department for Health Sciences, Medicine and Research

Center for Regenerative Medicine

Principle investigator for the project (Danube University Krems) Dr. Christoph Stotter
Project members Dipl.-Ing. Christoph Bauer, BSc BA Univ.-Prof. Dr. Stefan Nehrer Mag. Eugenia-Paulina Niculescu-Morzsa

Team

Publications

Klestil, T.; Röder, C.; Stotter, C.; Winkler, B.; Nehrer, S.; Lutz, M.; Klerings, I.; Wagner, G.; Gartlehner, G.; Nussbaumer-Streit, B. (2017). Immediate versus delayed surgery for hip fractures in the elderly patients: a protocol for a systematic review and meta-analysis. Systematic Reviews, 6(1): doi: 10.1186/s13643-017-0559-7

Back to top

 

To Glossary

This website uses cookies to improve your user experience, for analytical purposes for optimizing our systems "This website uses cookies to improve your user experience, for analytical purposes for optimizing our systems and for marketing purposes. By clicking on „OK" or continuing to browse the site, you are agreeing to the use of cookies. More information concerning privacy policy and data protection official.

OK