Beschreibung

Die Verringerung der Treibhausgasemissionen, insbesondere von CO2, hat auf der weltweiten Agenda oberste Priorität erlangt. Die Elektrifizierung des Verkehrs und erneuerbare Energien sind in hohem Maße auf Permanentmagnete angewiesen. Die Anpassung von Dauermagneten an die spezifischen Anforderungen einer Anwendung bei gleichzeitiger Reduzierung des Gehalts an kritischen Elementen ist für die notwendige Ausweitung grüner Technologien von entscheidender Bedeutung. Dieses Projekt zielt auf den Einsatz von datengesteuertem maschinellem Lernen ab, um das grundlegende Verständnis der Magnetisierungsumkehr zu verbessern und das inverse Design von magnetischen Materialien zu erleichtern. Obwohl sie bei der Entwicklung von Materialien für die magnetische Datenspeicherung und Spinelektronik eine wichtige Rolle spielen, sind mikromagnetische Simulationen kaum skalierbar, um Fragen der Entwicklung von Massenmaterialien zu beantworten. Eine alternative Methode für das inverse Design ist der Einsatz von datengesteuertem maschinellem Lernen. Durch Assimilation von Daten aus Hochdurchsatzmessungen an kombinatorischen gesputterten magnetischen Filmen und aus mikromagnetischen Graphennetzwerken werden Modelle erstellt, die Hystereseeigenschaften aus der chemischen Zusammensetzung, der Struktur und den Verarbeitungsbedingungen vorhersagen. Auf dem Gebiet der Strömungsdynamik und der Strukturmechanik wurde festgestellt, dass Graphennetzwerke die herkömmlichen Simulationen um Größenordnungen beschleunigen. Die Musterung der Filmstrukturen ergibt Inseln, die klein genug sind, um mit genauen mikromagnetischen Simulationen behandelt zu werden. Auf diese Weise können Daten aus Experimenten und Simulationen für die Erstellung robuster und zuverlässiger maschineller Lernmodelle verwendet werden. Das Projekt konzentriert sich auf die Anpassung der Eigenschaften von (Nd,Dy,La,Ce)FeB-Magneten mit stark reduziertem Nd- und Dy-Gehalt durch Änderung der chemischen Zusammensetzung und die Erforschung mehrphasiger Strukturen, die durch Korngrenzendiffusion erreicht werden.

Details

Projektzeitraum 01.03.2023 - 28.02.2026
Fördergeber FWF
Department

Department für Integrierte Sensorsysteme

Zentrum für Modellierung und Simulation

Projekt­verantwortung (Universität für Weiterbildung Krems) Ing. Dr. Harald Özelt, MSc
Projekt­mitarbeit

Publikationen

Moustafa, H.; Kovacs, A.; Fischbacher, J.; Gusenbauer, M.; Ali, Q.; Breth, L.; Hong, Y.; Rigaut, W.; Devillers, T.; Dempsey, N. M.; Schrefl, T.; Özelt, H. (2024). Reduced Order Model for Hard Magnetic Films. AIP Advances, Vol. 14, iss. 2: 025001-1 bis 025001-5

Vorträge

Reduced Order Model for Hard Magnetic Films

68th Annual Conference on Magnetism and Magnetic Materials, 31.10.2023

Reduced Order Model for Hard Magnetic Films

MMM 2023, 31.10.2023

Zum Anfang der Seite