Microwave based biosensors with printable surface modifications for point-of-care testing of haemodialysis patients


To allow rapid and label-free biosensing, a cost-efficient and miniaturized biosensor with a simple and direct transducer scheme should be employed. Integrated-optical waveguide devices using evanescent wave sensing are an attractive concept with this respect and have been intensively studied. Another concept that has been attempted only very recently, exploits evanescent waves in the microwave regime, which offers the advantage of low-cost sender and receiver components. In particular, microwave-resonator (MR) based designs are considered as highly promising transducers for the detection of biomolecules. In the last years, high-Q MRs came in focus to design devices with unique electromagnetic properties which are not readily occurring in nature. The research group of Pendry was the first who designed a new class of artificial materials with a continuous change of the electric permittivity and the magnetic permeability from positive to negative values. This class of materials is called metamaterials and can produce interesting new effects (e.g. negative refractive index, a perfect microwave cloak and sophisticated concentrators) which can be used because of their sensitivity for sensing applications. Different sensor designs based on artificial metamaterials and printable surface modifications for label-free biosensing are part of the project. ** Diese Arbeit wird von der NÖ Forschungs- und Bildungsges.m.b.H. (NFB) im Rahmen des Life Science Call kofinanziert. Für den Inhalt dieser Publikation sind die Autoren verantwortlich.


Projektzeitraum 01.01.2015 - 31.12.2017
Fördergeber Bundesländer (inkl. deren Stiftungen und Einrichtungen)
Förderprogramm Life Science Call NFB

Department für Integrierte Sensorsysteme

Zentrum für Wasser- und Umweltsensorik

Projekt­verantwortung (Donau-Universität Krems) Dipl.-Ing. Dr. Martin Brandl
Projekt­mitarbeit Dipl.-Ing. Lisa-Marie Wagner, BSc


Brandl, M.; Wagner, L.M. (2018). Microwave Oscillator Design for a SRR Based Biosensor Platform. MDPI Proceedings, 2(13): 865

Wagner, L. M.; Strasser, F.; Melnik, E.; Brandl, M. (2017). Electromagnetic Characterization and Simulation of a Carbonate Buffer System on a Microwave Biosensor. Jean-Paul Viricelle, Christophe Pijolat and Mathilde Rieu, Proceedings, 1(4): doi:10.3390/proceedings1040276, MDPI, Basel

Wagner, L. M. (2017). Development and optimization of a biosensor device based on microwave split-ring resonators. Donau-Universität Krems, TU-Wien, Diplomarbeit

Voglhuber-Brunnmaier, T.; Wagner, L.; Diskusb, C.G.; Jakoby, B.; Brandl, M. (2016). Sensitivity Optimization of Microwave Biosensors. Procedia Engineering, Proceedings of the 30th anniversary Eurosensors Conference – Eurosensors 2016, 168: 634–637

Wellenzohn, M.; Brandl, M. (2015). A Theoretical Design of a Biosensor Device Based on Split Ring Resonators for Operation in the Microwave Regime. Procedia Engineering, Vol. 120: 865–869


Microwave Oscillator Design for a SRR based Biosensor Platform

IEEE Eurosensors 2018 Conference, Graz, Austria, 11.09.2018

Centred gap split ring resonator for high sensitive detection of biomarkers during haemodialysis

MNE2017, 20.09.2017

Electromagnetic Characterization and Simulation of Carbonate Buffer System on a Microwave Biosensor

Eurosensors 2017, 04.09.2017

Optimization of a Biosensor Device based on a microwave Split-Ring Resonator

MNE 2016, 29.09.2016

A microwave split ring resonator (SRR) with hydrogel based biofunctionalization for sensor applications

Biosensors 2016, 26.05.2016

A theoretical design of a biosensor device based on split ring resonators for operation in the microwave regime

XXIX Eurosensors 2015, September 6 to 9, 2015, Freiburg, Germany, 07.09.2015

A biosensor device based on microwave split ring resonators

Jahrestagung der Österreichischen Physikalischen Gesellschaft, 1-4. Sept. Wien, 01.09.2015

Zum Anfang der Seite


Zum Glossar

Diese Website verwendet Cookies zur Verbesserung Ihrer Nutzererfahrung und für analytische Zwecke zur Optimierung unserer Systeme, sowie Google Maps zur Darstellung von Plänen. Indem Sie auf „OK" klicken bzw. die Website weiter verwenden, stimmen Sie der Cookie- und Google Maps Nutzung zu. Mehr Information zum Datenschutz.