Beschreibung
Die Verringerung der Treibhausgasemissionen, insbesondere von CO2, hat auf der weltweiten Agenda oberste Priorität erlangt. Die Elektrifizierung des Verkehrs und erneuerbare Energien sind in hohem Maße auf Permanentmagnete angewiesen. Die Anpassung von Dauermagneten an die spezifischen Anforderungen einer Anwendung bei gleichzeitiger Reduzierung des Gehalts an kritischen Elementen ist für die notwendige Ausweitung grüner Technologien von entscheidender Bedeutung. Dieses Projekt zielt auf den Einsatz von datengesteuertem maschinellem Lernen ab, um das grundlegende Verständnis der Magnetisierungsumkehr zu verbessern und das inverse Design von magnetischen Materialien zu erleichtern. Obwohl sie bei der Entwicklung von Materialien für die magnetische Datenspeicherung und Spinelektronik eine wichtige Rolle spielen, sind mikromagnetische Simulationen kaum skalierbar, um Fragen der Entwicklung von Massenmaterialien zu beantworten. Eine alternative Methode für das inverse Design ist der Einsatz von datengesteuertem maschinellem Lernen. Durch Assimilation von Daten aus Hochdurchsatzmessungen an kombinatorischen gesputterten magnetischen Filmen und aus mikromagnetischen Graphennetzwerken werden Modelle erstellt, die Hystereseeigenschaften aus der chemischen Zusammensetzung, der Struktur und den Verarbeitungsbedingungen vorhersagen. Auf dem Gebiet der Strömungsdynamik und der Strukturmechanik wurde festgestellt, dass Graphennetzwerke die herkömmlichen Simulationen um Größenordnungen beschleunigen. Die Musterung der Filmstrukturen ergibt Inseln, die klein genug sind, um mit genauen mikromagnetischen Simulationen behandelt zu werden. Auf diese Weise können Daten aus Experimenten und Simulationen für die Erstellung robuster und zuverlässiger maschineller Lernmodelle verwendet werden. Das Projekt konzentriert sich auf die Anpassung der Eigenschaften von (Nd,Dy,La,Ce)FeB-Magneten mit stark reduziertem Nd- und Dy-Gehalt durch Änderung der chemischen Zusammensetzung und die Erforschung mehrphasiger Strukturen, die durch Korngrenzendiffusion erreicht werden.
News
Am 17. Juli 2023 wurde auf scilog, dem Magazin des Wissenschaftsfonds FWF, ein Interview mit Harald Özelt veröffentlicht. Der Artikel befasst sich mit der Anwendung von künstlicher Intelligenz zur Optimierung starker Magnete für die Energiewende. Harald erläutert das Ziel des Teams, die Abhängigkeit von Seltenen Erden zu verringern und gleichzeitig die Leistung von Magneten für Elektromotoren und Generatoren zu verbessern. Das Interview hebt Haralds zwei Projekte hervor, DeNaMML und DataMag, die die Nanostruktur einzelner magnetischer Körner und ihre Wechselwirkungen in magnetischen Systemen mit verschiedenen chemischen Zusammensetzungen untersuchen. Der Artikel fand auch bei anderen Zeitungen und Plattformen wie ORF, APA, Die Presse, Bild, Jungfrauzeitung, Studium.at, Salzburger Nachrichten, Nau.ch Beachtung und wurde in verschiedenen Versionen veröffentlicht. Das Forschungsteam bedankt sich beim Österreichischen Wissenschaftsfonds für die Bereitstellung einer Plattform zur Präsentation ihrer Forschung.
Heisam Moustafa besuchte vom 19. bis 23. Juni 2023 die 16th Madrid UPM Machine Learning and Advanced Statistics Summer School (MLAS), hier besuchte er die Kurse 'Bayesian Networks' und 'Neural Networks and Deep Learning'. Beide Kurse dienen dazu, das Wissen in den genannten Bereichen mittels Theorie und auch Anwendungsbeispielen zu vertiefen. Dieses findet seinen Einsatz im Entwickeln von ML-Methoden für das Magnetdesign.

Am 18. April 2023 fand ein Online Kickoff Meeting statt. Vom Institut Néel nahmen Yuan Hong, William Rigaut und Nora Dempsey teil. Von der UWK waren Heisam Moustafa, Harald Özelt und Thomas Schrefl dabei. Es wurden die Strukturmessungen und Querschnittbilder von hartmagnetischen Filmen besprochen. Parameter wie Korngrößen und Formen für die Erstellung von synthetischen Strukturen für die Simulation wurden festgelegt.

Mitte April 2023 startete Heisam Moustafa als Doktorand in unserem Zentrum und arbeitet seither an mikromagnetischen Simulationen, Modellen reduzierter Ordnung und neuronalen Netzen. Heisam hat zuvor an der Universität Bremen den Master of Science in Space Engineering abgeschlossen und bei der Firma ZARM TECHNIK AG im Bereich Magnetismus und Strukturdesign gearbeitet.
Bereits Ende September 2022 besuchten Projektpartner des Instituts Néel der Université Grenoble Alpes, Nora Dempsey und Yuan Hong das Zentrum für Modellierung und Simulation in Wr. Neustadt. Es wurde ein vorgezogenes Projektmeeting abgehalten in dem die ersten Schritte bezüglich Herstellung von hartmagnetischen Filmen und deren Charakterisierung abgestimmt wurden.
Details
Projektzeitraum | 01.03.2023 - 28.02.2026 |
---|---|
Fördergeber | FWF |
Department | |
Projektverantwortung (Universität für Weiterbildung Krems) | Ing. Dr. Harald Özelt, MSc |
Projektmitarbeit | Heisam Moustafa, MSc |